Author:
Zhang Yu-Feng,Feng Bin-Lu,Rui Wen-Juan,Zhang Xiang-Zhi
Abstract
Abstract
With the help of a simple Lie algebra, an isospectral Lax pair, whose feature presents decomposition of element (1, 2) into a linear combination in the temporal Lax matrix, is introduced for which a new integrable hierarchy of evolution equations is obtained, whose Hamiltonian structure is also derived from the trace identity in which contains a constant γ to be determined. In the paper, we obtain a general formula for computing the constant γ. The reduced equations of the obtained hierarchy are the generalized nonlinear heat equation containing three-potential functions, the mKdV equation and a generalized linear KdV equation. The algebro-geometric solutions (also called finite band solutions) of the generalized nonlinear heat equation are obtained by the use of theory on algebraic curves. Finally, two kinds of gauge transformations of the spatial isospectral problem are produced.
Subject
Physics and Astronomy (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献