Author:
Hu Ya-Hong,Ma Zheng-Yi,Chen Li
Abstract
Abstract
Starting from the truncated Painlevé expansion, the residual symmetry of the Alice-Bob modified Korteweg-de Vries (AB-mKdV) equation is derived. The residual symmetry is localized and the AB-mKdV equation is transformed into an enlarged system by introducing one new variable. Based on Lie’s first theorem, the finite transformation is obtained from the localized residual symmetry. Further, considering the linear superposition of multiple residual symmetries gives rises to N-th Bäcklund transformation in the form of the determinant. Moreover, the
Ps
Td
(the shifted parity and delayed time reversal) symmetric exact solutions (including invariant solution, breaking solution and breaking interaction solution) of AB-mKdV equation are presented and two classes of interaction solutions are depicted by using the particular functions with numerical simulation.
Subject
Physics and Astronomy (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献