Deep nutrients and soil fungal communities support tomato fruit yield and quality in dry farm management systems

Author:

Socolar YvonneORCID,Matta Tucker Javier,Fuentes Melanie Rodríguez,Andoko Bethany,Cook James,Hernández Cristóbal Cruz,Mazariegos-Anastassiou Cole,Mazariegos-Anastassiou Verónica,Schirmer Joel,Socolar Jacob B,Woodard Claire,Wong Darryl G,Bowles Timothy MORCID

Abstract

Abstract Changing climates are causing agricultural water shortages at unprecedented scales and magnitudes, especially in regions historically reliant on irrigation. Identifying and understanding systems of farming that allow continuity in agricultural operations in times of water scarcity are increasingly urgent needs. Vegetable dry farming relies on winter rains stored in soils to reduce irrigation to 0–2 events per season and has become prevalent on California’s Central Coast in recent decades. Until now, this system has been unexplored in scientific literature beyond extension publications, despite its promise as a model for low-water agriculture in arid regions. Dry farm management presents a unique challenge given that low water content restricts nutrient access in surface soils, which farmers typically target for fertility management. Managing soil nutrients at depth, as well as microorganisms that help plants access nutrients and alleviate water stress (e.g. arbuscular mycorrhizal fungi, or AMF) could be crucial to dry farm success. We engaged in a collaborative research design process with farmers managing seven commercial dry farm tomato fields to identify and answer three key management questions: 1. What are the depths at which nutrients influence harvest outcomes given low water content in surface soils?, 2. Are commercially available AMF inoculants effective at improving harvest outcomes?, and 3. How does the broader fungal community change in dry farm soils, and are those changes associated with harvest outcomes? Only soil nutrients below 60 cm depth were correlated with tomato yield and fruit quality. We identified a fungal class, Sordariomycetes, as a ‘signature’ fungal group in dry farm soils that distinguished them from irrigated management and correlated with positive fruit quality, while commercial AMF inoculation showed little benefit. These findings can inform management practices that optimize fruit yield and quality, and can guide farmers and policymakers alike in efforts to minimize agricultural water use.

Funder

Western SARE

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3