A bioinspired navigation strategy that uses magnetic signatures to navigate without GPS in a linearized northern Atlantic ocean: a simulation study

Author:

Taylor Brian KORCID,Bernish Margaret K,Pizzuti Susan A,Kehl Catherine EORCID

Abstract

Abstract Certain animal species use the Earth’s magnetic field (i.e. magnetoreception) in conjunction with other sensory modalities to navigate long distances. It is hypothesized that several animals use combinations of magnetic inclination and intensity as unique signatures for localization, enabling migration without a pre-surveyed map. However, it is unknown how animals use magnetic signatures to generate guidance commands, and the extent to which species-specific capabilities and environmental factors affect a given strategy’s efficacy or deterioration. Understanding animal magnetoreception can aid in developing better engineered navigation systems that are less reliant on satellites, which are expensive and can become unreliable or unavailable under a variety of circumstances. Building on previous studies, we implement an agent-based computer simulation that uses two variants of a magnetic signature-based navigation strategy. The strategy can successfully migrate to eight specified goal points in an environment that resembles the northern Atlantic ocean. In particular, one variant reaches all goal points with faster ocean current velocities, while the other variant reaches all goal points with slower ocean current velocities. We also employ dynamic systems tools to examine the stability of the strategy as a proxy for whether it is guaranteed to succeed. The findings demonstrate the efficacy of the strategy and can help in the development of new navigation technologies that are less reliant on satellites and pre-surveyed maps.

Funder

UNC SMART program, NC Louis Stokes Alliance for Minority Participation.

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Reference41 articles.

1. Pseudolites preserve position information during GPS-denied conditions. (n.d.);Bailey,2016

2. Where on earth can animals use a geomagnetic bi-coordinate map for navigation?;Boström;Ecography,2012

3. Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles;Brothers;Curr. Biol.,2015

4. Absolute positioning using the earth’s magnetic anomaly field;Canciani;J. Inst. Navig.,2016

5. DT NAVFEST tests air force systems in GPS-denied environment (n.d.) Edwards air force base;Casem,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3