Bionic study of distance-azimuth discrimination of multi-scattered point objects in bat bio-sonar

Author:

Wang Feng,Chen MingORCID

Abstract

Abstract This paper presents a novel approach to enhance the discrimination capacity of multi-scattered point objects in bat bio-sonar. A broadband interferometer mathematical model is developed, incorporating both distance and azimuth information, to simulate the transmitted and received signals of bats. The Fourier transform is employed to simulate the preprocessing step of bat information for feature extraction. Furthermore, the bat bio-sonar model based on convolutional neural network (BS-CNN) is constructed to compensate for the limitations of conventional machine learning and CNN networks, including three strategies: Mix-up data enhancement, joint feature and hybrid atrous convolution module. The proposed BS-CNN model emulates the perceptual nerves of the bat brain for distance-azimuth discrimination and compares with four conventional classifiers to assess its discrimination efficacy. Experimental results demonstrate that the overall discrimination accuracy of the BS-CNN model is 93.4%, surpassing conventional CNN networks and machine learning methods by at least 5.9%. This improvement validates the efficacy of the BS-CNN bionic model in enhancing the discrimination accuracy in bat bio-sonar and offers valuable references for radar and sonar target classification.

Funder

蝙蝠声呐超分辨与抗杂波模型及其在水下声呐中的应用研究

Publisher

IOP Publishing

Reference41 articles.

1. A bibliometric analysis of research trends in bat echolocation studies between 1970 and 2021;Cao;Ecol. Inf.,2022

2. Automated classification of bat echolocation call recordings with artificial intelligence;Tabak;Ecol. Inf.,2022

3. The application of neural networks to classify dolphin echolocation clicks;Seydi;bioRxiv Preprint,2022

4. Toothed whales use distinct vocal registers for echolocation and communication;Madsen;Science,2023

5. Natural history and biosonar signals;Fenton,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3