Abstract
Abstract
Understanding the coordination of multiple biomechanical degrees of freedom in biological organisms is crucial for unraveling the neurophysiological control of sophisticated motor tasks. This study focuses on the cooperative behavior of upper-limb motor movements in the context of octave playing on the piano. While the vertebrate locomotor system has been extensively investigated, the coherence and precision timing of rhythmic movements in the upper-limb system remain incompletely understood. Inspired by the spinal cord neuronal circuits (central pattern generator, CPG), a computational neuro-musculoskeletal model is proposed to explore the coordination of upper-limb motor movements during octave playing across varying tempos and volumes. The proposed model incorporates a CPG-based nervous system, a physiologically-informed mechanical body, and a piano environment to mimic human joint coordination and expressiveness. The model integrates neural rhythm generation, spinal reflex circuits, and biomechanical muscle dynamics while considering piano playing quality and energy expenditure. Based on real-world human subject experiments, the model has been refined to study tempo transitions and volume control during piano playing. This computational approach offers insights into the neurophysiological basis of upper-limb motor coordination in piano playing and its relation to expressive features.
Funder
H2020 Marie Skłodowska-Curie Actions
Subject
Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献