Taking inspiration from climbing plants: methodologies and benchmarks—a review

Author:

Fiorello IsabellaORCID,Del Dottore EmanuelaORCID,Tramacere Francesca,Mazzolai Barbara

Abstract

Abstract One of the major challenges in robotics and engineering is to develop efficient technological solutions that are able to cope with complex environments and unpredictable constraints. Taking inspiration from natural organisms is a well-known approach to tackling these issues. Climbing plants are an important, yet innovative, source of inspiration due to their ability to adapt to diverse habitats, and can be used as a model for developing robots and smart devices for exploration and monitoring, as well as for search and rescue operations. This review reports the main methodologies and approaches used by scientists to investigate and extract the features of climbing plants that are relevant to the artificial world in terms of adaptation, movement, and behaviour, and it summarizes the current available climbing plant-inspired engineering solutions.

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Reference174 articles.

1. Some interesting and useful biomimetic transforms;Schmitt,1969

2. Biomimetics—using nature to inspire human innovation;Bar-Cohen;Bioinspir. Biomim.,2006

3. Introduction: biomimetics: lessons from nature-an overview;Bhushan;Phil. Trans.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3