The effect of variable stiffness of tuna-like fish body and fin on swimming performance

Author:

Luo YangORCID,Xiao QingORCID,Shi GuangyuORCID,Pan Guang,Chen Daoyi

Abstract

Abstract The work in this paper focuses on the examination of the effect of variable stiffness distributions on the kinematics and propulsion performance of a tuna-like swimmer. This is performed with the use of a recently developed fully coupled fluid-structure interaction solver. The two different scenarios considered in the present study are the stiffness varied along the fish body and the caudal fin, respectively. Our results show that it is feasible to replicate the similar kinematics and propulsive capability to that of the real fish via purely passive structural deformations. In addition, propulsion performance improvement is mainly dependent on the better orientation of the force near the posterior part of swimmers towards the thrust direction. Specifically, when a variable body stiffness scenario is considered, the bionic body stiffness profile results in better performance in most cases studied herein compared with a uniform stiffness commonly investigated in previous studies. Given the second scenario, where the stiffness is varied only in the spanwise direction of the tail, similar tail kinematics to that of the live scombrid fish only occurs in association with the heterocercal flexural rigidity profile. The resulting asymmetric tail conformation also yields performance improvement at intermediate stiffness in comparison to the cupping and uniform stiffness.

Funder

Engineering and Physical Sciences Research Council

EPSRC-funded Supergen ORE Hub

Chinese Scholarship Council

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Reference60 articles.

1. Some points in the function, development and evolution of the tail in fishes;Affleck,1950

2. The fish tail motion forms an attached leading edge vortex;Borazjani;Proc. R. Soc. B,2013

3. Low-dimensional models and performance scaling of a highly deformable fish pectoral fin;Bozkurttas;J. Fluid Mech.,2009

4. On the evolution of the wake structure produced by a low-aspect-ratio pitching panel;Buchholz;J. Fluid Mech.,2006

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3