Fish-inspired robotic algorithm: mimicking behaviour and communication of schooling fish

Author:

Connor JackORCID,Joordens Matthew,Champion Benjamin

Abstract

Abstract This study aims to present a novel flocking algorithm for robotic fish that will aid the study of fish in their natural environment. The algorithm, fish-inspired robotic algorithm (FIRA), amalgamates the standard flocking behaviors of attraction, alignment, and repulsion, together with predator avoidance, foraging, general obstacle avoidance, and wandering. The novelty of the FIRA algorithm is the combination of predictive elements to counteract processing delays from sensors and the addition of memory. Furthermore, FIRA is specifically designed to work with an indirect communication method that leads to superior performance in collision avoidance, exploration, foraging, and the emergence of realistic behaviors. By leveraging a high-latency, non-guaranteed communication methodology inspired by stigmergy methods inherent in nature, FIRA successfully addresses some of the obstacles associated with underwater communication. This breakthrough enables the realization of inexpensive, multi-agent swarms while concurrently harnessing the advantages of tetherless communication. FIRA provides a computational light control algorithm for further research with low-cost, low-computing agents. Eventually, FIRA will be used to assimilate robots into a school of biological fish, to study or influence the school. This study endeavors to demonstrate the effectiveness of FIRA by simulating it using a digital twin of a bio-inspired robotic fish. The simulation incorporates the robot’s motion and sensors in a realistic, real-time environment with the algorithm used to direct the movements of individual agents. The performance of FIRA was tested against other collective flocking algorithms to determine its effectiveness. From the experiments, it was determined that FIRA outperformed the other algorithms in both collision avoidance and exploration. These experiments establish FIRA as a viable flocking algorithm to mimic fish behavior in robotics.

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Reference76 articles.

1. Grey wolf optimizer;Mirjalili;Adv. Eng. Softw.,2014

2. Ant colony optimization;Dorigo,2011

3. A comparative study of artificial bee colony algorithm;Karaboga;Appl. Math. Comput.,2009

4. Bio inspired computing–a review of algorithms and scope of applications;Kar;Expert Syst. Appl.,2016

5. Swarm robotic behaviors and current applications;Schranz;Front. Robot. AI,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3