Biomimicking interfacial fracture behavior of lizard tail autotomy with soft microinterlocking structures

Author:

Baban Navajit SORCID,Orozaliev Ajymurat,Stubbs Christopher J,Song Yong-AkORCID

Abstract

Abstract Biological soft interfaces often exhibit complex microscale interlocking geometries to ensure sturdy and flexible connections. If needed, the interlocking can rapidly be released on demand leading to an abrupt decrease of interfacial adhesion. Here, inspired by lizard tail autotomy where such apparently tunable interfacial fracture behavior can be observed, we hypothesized an interlocking mechanism between the tail and body based on the muscle-actuated mushroom-shaped microinterlocks along the fracture planes. To mimic the fracture behavior of the lizard tail, we developed a soft bilayer patch that consisted of a dense array of soft hemispherical microstructures in the upper layer acting as mechanical interlocks with the counter body part. The bottom control layer contained a microchannel that allowed to deflect the upper layer when applying the negative pressure, thus mimicking muscle contraction. In the microinterlocked condition, the biomimetic tail demonstrated a 2.7-fold and a three-fold increase in adhesion strength and toughness, respectively, compared to the pneumatically released microinterlocks. Furthermore, as per the computational analysis, the subsurface microchannel in the control layer enabled augmented adhesion by rendering the interface more compliant as a dissipative matrix, decreasing contact opening and strain energy dissipation by 50%. The contrasting features between the microinterlocked and released cases demonstrated a highly tunable adhesion of our biomimetic soft patch. The potential applications of our study are expected in soft robotics and prosthetics.

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3