Locomotor transition: how squid jet from water to air

Author:

Hou T GORCID,Yang X BORCID,Wang T M,Liang J H,Li S W,Fan Y B

Abstract

Abstract The amazing multi-modal locomotion of flying squid helps to achieve fast-speed migration and predator-escape behavior. Observation of flying squid has been rarely reported in recent years, since it is challenging to clearly record the flying squid’s aquatic-aerial locomotion in a marine environment. The existing reports of squid-flying events are rare and merely record the in-air motion. Therefore, the water-air locomotor transition of flying squid is still unknown. This paper proposes the idea of using CFD to simulate the process of the flying squid (Sthenoteuthis oualaniensis (S. oualaniensis)) launching from water into air. The results for the first time reveal the flow field information of squid in launching phase and show the kinematic parameters of flying squid in quantification. Both a trailing jet and pinch-off vortex rings are formed to generate launching thrust, and the formation number L ω /D ω is 5.22, demonstrating that the jet strategy is to produce greater time-averaged thrust rather than higher propulsion efficiency. The results also indicate that the maximum flying speed negatively correlates with the launch angle, indicating that a lower launch angle could result in a larger flying speed for the flying squid to escape. These findings explore the multi-modal locomotion of flying squid from a new perspective, helping to explain the trade-off strategy of water-to-air transition, and further enhance the performance of aquatic-aerial vehicles.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

China Postdoctoral Science Foundation

China Scholarship Council

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Reference67 articles.

1. Plunge-diving and porpoising by aquatic seabirds;Bourne;Br. Birds,1976

2. Ultraviolet vision and foraging in dip and plunge diving birds;Håstad;Biol. Lett.,2005

3. A note on the flying behavior of the certain squids;Arata;Nautilus,1954

4. How and why do flying fish fly?;Davenport;Rev. Fish Biol. Fisher.,1994

5. Air and water vision of the Atlantic flying fish, Cypselurus heterurus;Baylor;Nature.,1967

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3