Passive double pendulum in the wake of a cylinder forced to rotate emulates a cyclic human walking gait

Author:

Carleton Adrian GORCID,Sup Frank CORCID,Modarres-Sadeghi YahyaORCID

Abstract

Abstract The goal of this work is to present a method based on fluid–structure interactions to enforce a desired trajectory on a passive double pendulum. In our experiments, the passive double pendulum represents human thigh and shank segments, and the interaction between the fluid and the structure comes from a hydrofoil attached to the double pendulum and interacting with the vortices that are shed from a cylinder placed upstream. When a cylinder is placed in flow, vortices are shed in the wake of the cylinder. When the cylinder is forced to rotate periodically, the frequency of the vortices that are shed in its wake can be controlled by controlling the frequency of cylinder’s rotation. These vortices exert periodic forces on any structure placed in the wake of this cylinder. In our system, we place a double pendulum fitted with a hydrofoil at its distal end in the wake of a rotating cylinder. The vortices exert periodic forces on this hydrofoil which then forces the double pendulum to oscillate. We control the cylinder to rotate periodically, and measure the displacement of the double pendulum. By comparing the joint positions of the double pendulum with those of human hip, knee and ankle joint positions during walking, we show how the system is able to generate a human walking gait cycle on the double pendulum only using the interactions between the vortices and the hydrofoil.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kirigami sheets in fluid flow;Extreme Mechanics Letters;2024-09

2. Force Transmission in Non-Uniform Fluid Flow by Controlling Vortices;2024 IEEE International Conference on Advanced Intelligent Mechatronics (AIM);2024-07-15

3. A flexible sheet in the wake of a cylinder forced to rotate;Journal of Fluids and Structures;2024-06

4. Observer-controller tuning approach for double pendulum with genetic algorithm and neural network;International Journal of Dynamics and Control;2024-05-21

5. Special issue: bioinspired fluid-structure interaction;Bioinspiration & Biomimetics;2023-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3