Nature-inspired in-flight foldable rotorcraft

Author:

Bhardwaj HiteshORCID,Cai XinyuORCID,Win Luke Soe ThuraORCID,Foong ShaohuiORCID

Abstract

Abstract The paper presents a novel rotary wing platform, that is capable of folding and expanding its wings during flight. Our source of inspiration came from birds’ ability to fold their wings to navigate through small spaces and dive. The design of the rotorcraft is based on the monocopter platform, which is inspired by the flight of Samara seeds. The wings are constructed by applying origami techniques to fold them in flight. Two configurations are presented, featuring active or passive mechanisms for wing-folding depending on specific application requirements. The two configurations can reduce their overall footprint by approximately 39% and 69% while in flight. A cyclic controller is implemented for controlling the translational motion, where the direction is controlled by pulsing the motors at a specific instance during each cycle of rotation. We have presented experimental results to prove the control of our platform in different modes while in flight. The presented platforms enhance the practical uses of the monocopter platform by providing it with the ability to reduce its footprint while in flight actively, or by allowing them to dive through the air without any additional actuator.

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3