Abstract
Abstract
In this work, a spiking neural network (SNN) is proposed for approximating differential sensorimotor maps of robotic systems. The computed model is used as a local Jacobian-like projection that relates changes in sensor space to changes in motor space. The SNN consists of an input (sensory) layer and an output (motor) layer connected through plastic synapses, with inter-inhibitory connections at the output layer. Spiking neurons are modeled as Izhikevich neurons with a synaptic learning rule based on spike timing-dependent plasticity. Feedback data from proprioceptive and exteroceptive sensors are encoded and fed into the input layer through a motor babbling process. A guideline for tuning the network parameters is proposed and applied along with the particle swarm optimization technique. Our proposed control architecture takes advantage of biologically plausible tools of an SNN to achieve the target reaching task while minimizing deviations from the desired path, and consequently minimizing the execution time. Thanks to the chosen architecture and optimization of the parameters, the number of neurons and the amount of data required for training are considerably low. The SNN is capable of handling noisy sensor readings to guide the robot movements in real-time. Experimental results are presented to validate the control methodology with a vision-guided robot.
Funder
Key-Area Research and Development Program of Guangdong Province 2020
Chinese National Engineering Research Centre for Steel Construction (Hong Kong Branch) at PolyU
PROCORE-France/Hong Kong Joint Research Scheme
Research Grants Council (RGC) of Hong Kong
The Hong Kong Polytechnic University
Subject
Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献