A monocular wide-field speed sensor inspired by the crabs’ visual system for traffic analysis

Author:

Guimaraynz Hernán DORCID,Arroyo Sebastián IORCID,Ibáñez Santiago A,Oliva Damián EORCID

Abstract

Abstract The development of visual sensors for traffic analysis can benefit from mimicking two fundamental aspects of the visual system of crabs: their panoramic vision and their visual processing strategy adapted to a flat world. First, the use of omnidirectional cameras in urban environments allows for analyzing the simultaneous movement of many objects of interest over broad areas. This would reduce the costs and complications associated with infrastructure: installation, synchronization, maintenance, and operation of traditional vision systems that use multiple cameras with a limited field of view. Second, in urban traffic analysis, the objects of interest (e.g. vehicles and pedestrians) move on the ground surface. This constraint allows the calculation of the 3D trajectory of the vehicles using a single camera without the need to use binocular vision techniques. The main contribution of this work is to show that the strategy used by crabs to visually analyze their habitat (monocular omnidirectional vision with the assumption of a flat world ) is useful for developing a simple and effective method to estimate the speed of vehicles on long trajectories in urban environments. It is shown that the proposed method estimates the speed with a root mean squared error of 2.7 km h−1.

Funder

Project: Sistemas Autónomos Basados en Inteligenica Artificial. UNQ

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3