A bioinspired robotic knee with controlled joint surfaces and adjustable ligaments

Author:

Liang WeiORCID,Wu WeiORCID,Chen Wei,Ren Lei,Wang KunyangORCID,Qian Zhihui,Ren Luquan

Abstract

Abstract The knee joint plays a key role in kinematic and kinetic performances of pedestrain locomotion. The key role of meniscus with matched ligaments in joint stability and movability has not been fully explored in current robotic knee designs. We fabricate a bioinspired robotic knee based on a kinematic model of an anatomical knee in order to reveal the relationship between the meniscus, ligaments and their stability and movability, respectively. The kinematic model was built from magnetic resonance imaging of the human knee with generated contact profiles and customized ligament fibers. Then, the bioinspired knee was designed, and its dynamic stability was maintained by ligaments and specific contact profiles, which were acquired based on the kinematic model. Finally, a monopod robot with the bioinspired knee assembled was developed for dynamic testing. The results show that (1) a smooth rolling–sliding motion can be achieved with the addition of menisci and compatible ligaments; and (2) joint stiffness can be adjusted by changing the springs and activation lengths of ligament fibers. This study gives biomimetic insights into a new design of knee joint for a robotic/prosthetic leg.

Funder

Research and Development Program of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Reference58 articles.

1. ATRIAS: design and validation of a tether-free 3D-capable spring-mass bipedal robot;Hubicki;Int. J. Robot. Res.,2016

2. GOAT: a legged robot with 3D agility and virtual compliance;Kalouche,2017

3. The role and implementation of compliance in legged locomotion;Hurst,2008

4. Series elastic actuators;Pratt,1995

5. A new biarticular actuator design facilitates control of leg function in BioBiped3;Sharbafi;Bioinspir. Biomim.,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3