Controlling a bio-inspired miniature blimp using a depth sensing neural-network camera

Author:

Pham Huy Q,Singh Shreyansh,Garratt Matthew,Ravi SridharORCID

Abstract

Abstract Miniature blimps are lighter-than-air vehicles which have become an increasingly common unmanned aerial system research platform due to their extended endurance and collision tolerant design. The UNSW-C bio-inspired miniature blimp consists of a 0.5 m spherical mylar envelope filled with helium. Four fins placed along the equator provide control over the three translatory axes and yaw rotations. A gondola attached to the bottom of the blimp contains all the electronics and flight controller. Here, we focus on using the UNSW-C blimp as a platform to achieve autonomous flight in GPS-denied environments. The majority of unmanned flying systems rely on GPS or multi-camera motion capture systems for position and orientation estimation. However, such systems are expensive, difficult to set up and not compact enough to be deployed in real environments. Instead, we seek to achieve basic flight autonomy for the blimp using a low-priced and portable solution. We make use of a low-cost embedded neural network stereoscopic camera (OAK-D-PoE) for detecting and positioning the blimp while an onboard inertia measurement unit was used for orientation estimation. Flight tests and analysis of trajectories revealed that 3D position hold as well as basic waypoint navigation could be achieved with variance (<0.1 m). This performance was comparable to that when a conventional multi-camera positioning system (VICON) was used for localizing the blimp. Our results highlight the potentially favorable tradeoffs offered by such low-cost positioning systems in extending the operational domain of unmanned flight systems when direct line of sight is available.

Funder

Asian Office of Aerospace Research and Development

Office of Naval Research Global

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3