Hill-type, bioinspired actuation delivers energy economy in DC motors

Author:

McGrath JakeORCID,Alvarado JoséORCID

Abstract

Abstract Electromagnetic motors convert stored energy to mechanical work through a linear force–velocity (FV) relationship. In biological systems, however, muscle actuation is characterized by the hyperbolic FV mechanisms of the Hill muscle—in which a parameter α characterizes the degree of nonlinearity. Previous work has shown that bioinspiration in human-engineered systems can contribute favorable mechanical attributes—such as energy efficiency, self-stability, and flexibility, among others. In this study, we first construct an easily amendable, bioinspired electromagnetic motor which produces FV curves that mimic the Hill model of muscle with a high degree of accuracy. A proportional-integral-differential (PID) controller converges the characteristically linear FV relationship of a DC motor to nonlinear Hill-type force outputs. The bioinspired electric motor does a fixed amount of work by lifting a 147.5 g mass, and we record the translational velocity of the mass and the nonlinear applied force of the motor. Under optimized gain coefficients in the PID, the bioinspired motor achieves agreement of 0.99$?> R 2 > 0.99 with the Hill muscle model. Studies have shown that designing biologically inspired actuators produce comparatively energy efficient systems. We investigate the energy economy of actuating our motor with nonlinear, Hill-type forces in direct comparison with conventional linear FV actuation techniques. We find that the bioinspired motor delivers energy economy with respect to energy consumption and conversion: the nonlinear, Hill-type DC motor reduces the energetic cost of actuation when delivering a fixed amount of mechanical work.

Funder

Army Research Office

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3