Compact and ordered swarms of unmanned aerial vehicles in cluttered environments

Author:

Xiong HuiORCID,Ding YaozuORCID,Liu JinzhenORCID

Abstract

Abstract The globally coordinated motion produced by the classical swarm model is typically generated by simple local interactions at the individual level. Despite the success of these models in interpretation, they cannot guarantee compact and ordered collective motion when applied to the cooperation of unmanned aerial vehicle (UAV) swarms in cluttered environments. Inspired by the behavioral characteristics of biological swarms, a distributed self-organized Reynolds (SOR) swarm model of UAVs is proposed. In this model, a social term is designed to keep the swarm in a collision-free, compact, and ordered collective motion, an obstacle avoidance term is introduced to make the UAV avoid obstacles with a smooth trajectory, and a migration term is added to make the UAV fly in a desired direction. All the behavioral rules for agent interactions are designed with as simple a potential function as possible. And the genetic algorithm is used to optimize the parameters of the model. To evaluate the collective performance, we introduce different metrics such as (a) order, (b) safety, (c) inter-agent distance error, (d) speed range. Through the comparative simulation with the current advanced bio-inspired compact and Vasarhelyi swarm models, the proposed approach can guide the UAV swarm to pass through the dense obstacle environment in a safe and ordered manner as a compact group, and has adaptability to different obstacle densities.

Funder

Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3