A bat biomimetic model for scenario recognition using echo Doppler information

Author:

Feng Wang,Chunyang PangORCID,Yuqing Lu,Hao Wang

Abstract

Abstract The flying bat can detect the difference in Doppler frequency between its echolocation transmission signal and the echoes in its surroundings, enabling it to distinguish between various scenarios effectively. By examining the bio-sonar biomimetic model of a flying bat that uses echo Doppler information for environmental recognition, it may enhance the scene recognition capability of human ultrasound sonar during movement. The paper establishes a three-dimensional clutter model of the flying state of bat bio-sonar for bats emitting constant frequency signals. It proposes a scene recognition method that combines multi-scale time-frequency feature analysis with a convolutional neural network (CNN). The short-time Fourier transform of different scales extract the Doppler and range dimensions, which are then fused to create a multi-scale feature plane containing both Doppler and range information. Combined with CNN’s powerful image classification and recognition capabilities, extract features from multi-scale feature planes of different clutter scenes to achieve environment recognition based on the differences in Doppler and range dimensions of echoes in various directions. Through computer simulations, this study provides a numerical interpretation of the environmental classification and perception capabilities of bats in flight. The algorithm significantly improves scenario classification and recognition performance according to simulation results, with accuracy exceeding 98% in varied clutter scenarios at 30 dB signal noise ratio. Based on computer simulations, an experimental scene was constructed and actual echo signals were collected and analyzed. The experiments demonstrate that utilizing Doppler information enables the classification and recognition of cluttered environments. The effectiveness of the proposed algorithm was also verified. Ultrasonic sonar systems, such as navigation robots and helicopter obstacle avoidance, can apply this biomimetic model and algorithm for environmental recognition during motion.

Funder

蝙蝠声呐超分辨与抗杂波模型及其在水下声呐中的应用研究

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3