Abstract
Abstract
Inspired by the albatross, this paper presents the construction of a dynamic soaring simulation system with distributed pressure sensors. The advantage of our system lies in harvesting energy from the wind shear layer and estimating the wind information using a pressure-based sensor system. Specifically, the dynamic soaring simulation system contains an offline training stage and an online estimation and control stage. In the offline training stage, computational fluid dynamics simulations are conducted and used as the data source. A surrogate model is established to correlate the local flow conditions and the surface pressure at optimal sensor positions. In the online estimation and control stage, through sensing the pressure information, the real-time wind velocity and wind gradient are estimated by the surrogate model trained in the offline stage. Moreover, wind information is adopted in the simulation of dynamic soaring control. In this study, the simulation system was applied to linear and circular path-following tasks. It was found that the dynamic soaring simulation system with distributed pressure sensors provides an acceptable estimation of wind velocity and wind gradient with a certain time delay caused by numerical differentiation.
Subject
Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献