Effects of loading and unloading control parameters on adhesive performance for biomimetic controllable adhesive with wedge-shaped microstructures

Author:

Wang WeiORCID,Liu Yang,Xie Zongwu

Abstract

Abstract The adhesive performance of biomimetic controllable adhesive based on wedge-shaped microstructures is affected by some relevant control parameters in the process of loading and unloading. An appropriate selection of these control parameters is of great significance for its effective application. However, little research has concentratively and comprehensively explored these control parameters. In order to make up for the shortcoming, this study systematically explored the macroscopic adhesive performance of the self-developed wedge-shaped microstructures under different loading and unloading control parameters. The results show that preloading depth and tangential dragging distance have a positive effect on the adhesive performance, while preloading angle and peeling angle have a negative effect on the adhesive performance. Specifically, a low preloading angle can weaken the normal preloading force under the same preloading depth, thereby improving the preloading benefit; the application of tangential dragging distance can also induce the normal preloading force generated in the preloading stage to change the adhesion, so as to stimulate more adhesion. Based on the interactive analysis of these control parameters, it can be sure that applying a moderate normal preloading force and a larger tangential dragging distance to the wedge-shaped microstructures at low preloading angle not only makes the wedge-shaped microstructures possess better adhesive capacity, but also can obtain a good preloading benefit. In addition, the promotion effect of a low peeling angle on the adhesive performance also implies that a higher peeling angle should be used to realize the easy detachment of the adhesive interface. The first concentrative and comprehensive investigation of the relevant control parameters of wedge-shaped microstructures lays the foundation for designing a climbing robot or adhesive gripper based on the wedge-shaped microstructures, and also provides guidance for formulating the corresponding control strategies.

Funder

Self-Planned Task of State Key Laboratory of Robotics and System

Major Research Plan of the National Natural Science Foundation of China

Special Foundation (Pre-Station) of China Postdoctoral Science

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3