Anisotropic porous ceramic material with hierarchical architecture for thermal insulation

Author:

Zhao NifangORCID,Mao Anran,Shao Ziyu,Bai HaoORCID

Abstract

Abstract Porous ceramic materials are attractive candidates for thermal insulation. However, effective ways to develop porous ceramics with high mechanical and thermal insulation performances are still lacking. Herein, an anisotropic porous silica ceramic with hierarchical architecture, i.e. long-range aligned lamellar layers composed of hollow silica spheres, was fabricated applying a facile bidirectional freezing method. Due to such anisotropic structure, the as-prepared porous silica ceramic displays low thermal conductivity across the layers and high compressive strength along the layers. Additionally, the anisotropic porous silica ceramic is fire-resistant. As a proof of concept, a mini-house was roofed with the anisotropic porous silica ceramic, showing that the indoor temperature could be stabilized against environmental temperature change, making this porous ceramic a promising candidate for energy efficient buildings and other industrial applications. Our study highlights the possibility of combining intrinsically exclusive properties in engineering materials through constructing biomimetic porous structures.

Funder

National Natural Science Foundation of China

Thousand Young Talents Program of China

State Key Laboratory of Chemical Engineering

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3