Wall effect on the start maneuver of a jet swimmer

Author:

Zhu QiangORCID

Abstract

Abstract Inspired by aquatic creatures such as squid, the novel propulsion method based on pulsed jetting is a promising way to achieve high speed and high maneuverability. To study the potential application of this locomotion method in confined space with complicated boundary conditions, it is critical to understand their dynamics in the vicinity of solid boundaries. In this study we numerically examine the start maneuver of an idealized jet swimmer near a wall. Our simulations illustrate three important mechanisms: (1) due to the blocking effect of the wall the pressure inside the body is affected so that the forward acceleration is increased during deflation and decreased during inflation; (2) the wall affects the internal flow so that the momentum flux at the nozzle and subsequently the thrust generation during the jetting phase are slightly increased; (3) the wall affects the wake so that the refilling phase is influenced, leading to a scenario in which part of the energy expended during jetting is recovered during refilling to increase forward acceleration and reduce power expenditure. In general, the second mechanism is weaker than the other two. The exact effects of these mechanisms depend on physical parameters such as the initial phase of the body deformation, the distance between the swimming body and the wall, and the Reynolds number.

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3