Plant-inspired rearrangement of liquid in a porous structure for controlled swelling

Author:

Sarokin YauheniORCID,Aabloo Alvo,Must Indrek

Abstract

Abstract Soft robots can adapt to dynamic environments without prior knowledge of their properties. Plants inspire mechanisms for counterbalancing dynamic loads by locally modulating compliance through anisotropic humidity-responsive materials and structures. In addition to well-known passive bilayers, plants may also actively control swelling. The combination of robust hygroscopic material-level response and simple electrical control makes active swelling particularly attractive for technological implementation. However, dynamic swelling demands the development and optimisation of congruent pumping solutions. This work suggests electrohydrodynamic pumping, enabled by highly reversible ion immobilisation at capacitive electrodes, as a particularly suitable low-pressure, high-area liquid displacement solution for active swelling. Local pore fill ratio (PFR) modulation is used as a measure for dynamic liquid displacement and swelling. A method for highly localised (10 μm membrane thickness) assessment of the dynamic variation of PFR in a 400 μm laminate undergoing cross-plane electrokinetic liquid displacement is developed. Two modes for transient PFR modulation were identified: electrokinetic ion transfer and diffusive solvent redistribution, pronounced at high and low voltage scan rates, respectively. The strategic combination of these modes enables various compliance-modulation scenarios. The system contains (within a cycle) a constant amount of liquid in an open network of liquid-filled pores. 30%–75% PFR yielded the highest dynamic PFR modulation: a high amount of empty pores is beneficial, yet a too-low PFR compromises the continuous liquid pathway necessary for electrokinetic pumping. The dynamic nature of internal liquid rearrangement was characterised by relatively fast electrokinetics-driven fluxes (6.3% PFR change in 80 s), followed by a slow equilibration of concentration and PFR. At high scan rates, PFR decreased at positive polarisation, while both positive and negative polarity yielded a similar decrease at low scan rates (5 mV s−1). Localised control over the swelling gradient enables the design of systems that morphologically adapt to complex dynamic loading conditions.

Funder

Estonian Research Council

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Reference19 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3