Branching pattern of flexible trees for environmental load mitigation

Author:

Ojo OluwafemiORCID,Shoele KouroshORCID

Abstract

Abstract Wind-induced stress is the primary mechanical cause of tree failures. Among different factors, the branching mechanism plays a central role in the stress distribution and stability of trees in windstorms. A recent study showed that Leonardo da Vinci’s original observation, stating that the total cross section of branches conserved across branching nodes is the optimal configuration for resisting wind-induced damage in rigid trees, is correct. However, the breaking risk and the optimal branching pattern of trees are also a function of their reconfiguration capabilities and the processes they employ to mitigate high wind-induced stress hotspots. In this study, using a numerical model of rigid and flexible branched trees, we explore the role of flexibility and branching patterns of trees in their reconfiguration and stress mitigation capabilities. We identify the robust optimal branching mechanism for an extensive range of tree flexibility. Our results show that the probability of a tree breaking at each branching level from the stem to terminal foliage strongly depends on the cross section changes in the branching nodes, the overall tree geometry, and the level of tree flexibility. Three response categories have been identified: the stress concentration in the main trunk, the uniform stress level through the tree’s height, and substantial stress localization in the terminal branches. The reconfigurability of the tree determines the dominant response mode. The results suggest a very similar optimal branching law for both flexible and rigid trees wherein uniform stress distribution occurs throughout the tree’s height. An exception is the very flexible branched plants in which the optimal branching pattern deviates from this prediction and is strongly affected by the reconfigurability of the tree.

Funder

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3