Abstract
Abstract
The compliance and conformability of soft robots provide inherent advantages when working around delicate objects or in unstructured environments. However, rapid locomotion in soft robotics is challenging due to the slow propagation of motion in compliant structures, particularly underwater. Cephalopods overcome this challenge using jet propulsion and the added mass effect to achieve rapid, efficient propulsion underwater without a skeleton. Taking inspiration from cephalopods, here we present an underwater robot with a compliant body that can achieve repeatable jet propulsion by changing its internal volume and cross-sectional area to take advantage of jet propulsion as well as the added mass effect. The robot achieves a maximum average thrust of 0.19 N and maximum average and peak swimming speeds of 18.4 cm s−1 (0.54 body lengths/s) and 32.1 cm s−1 (0.94 BL/s), respectively. We also demonstrate the use of an onboard camera as a sensor for ocean discovery and environmental monitoring applications.
Funder
National Science Foundation
Office of Naval Research
Subject
Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献