Automated optimization of multilevel models of collective behaviour: application to mixed society of animals and robots

Author:

Cazenille LeoORCID,Bredeche NicolasORCID,Halloy JoséORCID

Abstract

Abstract Animal societies exhibit complex dynamics that require multi-level descriptions. They are difficult to model, as they encompass information at different levels of description, such as individual physiology, individual behaviour, group behaviour and features of the environment. The collective behaviour of a group of animals can be modelled as a dynamical system. Typically, models of behaviour are either macroscopic (differential equations of population dynamics) or microscopic (such as Markov chains, explicitly specifying the spatio-temporal state of each individual). These two kind of models offer distinct and complementary descriptions of the observed behaviour. Macroscopic models offer mean field description of the collective dynamics, where collective choices are considered as the stable steady states of a nonlinear system governed by control parameters leading to bifurcation diagrams. Microscopic models can be used to perform computer simulations or as building blocks for robot controllers, at the individual level, of the observed spatial behaviour of animals. Here, we present a methodology to translate a macroscopic model into different microscopic models. We automatically calibrate the microscopic models so that the resulting simulated collective dynamics fit the solutions of the reference macroscopic model for a set of parameter values corresponding to a bifurcation diagram leading to multiple steady states. We apply evolutionary algorithms to simultaneously optimize the parameters of the models at different levels of description. This methodology is applied, in simulation, to an experimentally validated shelter-selection problem solved by gregarious insects and robots. Our framework can be used for multi-level modelling of collective behaviour in animals and robots.

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Reference50 articles.

1. Animal–robots collective intelligence;De Schutter;Ann. Math. Artif. Intell.,2001

2. Social integration of robots into groups of cockroaches to control self-organized choices;Halloy;Science,2007

3. Towards mixed societies of chickens and robots;Gribovskiy,2010

4. Towards bio-hybrid systems made of social animals and robots;Halloy,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3