Demographic noise in complex ecological communities

Author:

Larroya FerranORCID,Galla TobiasORCID

Abstract

Abstract We introduce an individual-based model of a complex ecological community with random interactions. The model contains a large number of species, each with a finite population of individuals, subject to discrete reproduction and death events. The interaction coefficients determining the rates of these events is chosen from an ensemble of random matrices, and is kept fixed in time. The set-up is such that the model reduces to the known generalised Lotka–Volterra equations with random interaction coefficients in the limit of an infinite population for each species. Demographic noise in the individual-based model means that species which would survive in the Lotka–Volterra model can become extinct. These noise-driven extinctions are the focus of the paper. We find that, for increasing complexity of interactions, ecological communities generally become less prone to extinctions induced by demographic noise. An exception are systems composed entirely of predator-prey pairs. These systems are known to be stable in deterministic Lotka–Volterra models with random interactions, but, as we show, they are nevertheless particularly vulnerable to fluctuations.

Funder

Ministerio de Ciencia e Innovación

Agencia Estatal de Investigación

European Regional Development Fund

Publisher

IOP Publishing

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3