Computational behavioral models in public goods games with migration between groups

Author:

Tomassini Marco,Antonioni AlbertoORCID

Abstract

Abstract In this study we have simulated numerically two models of linear public goods games where players are equally distributed among a given number of groups. Agents play in their group by using two simple sets of rules, called ‘blind’ and ‘rational’ model, respectively, that are inspired by the observed behavior of human participants in laboratory experiments. In addition, unsatisfied agents have the option of leaving their group and migrating to a new random one through probabilistic choices. Stochasticity, and the introduction of two types of players in the blind model, help simulate the heterogeneous behavior that is often observed in experimental work. Our numerical simulations of the corresponding dynamical systems show that being able to leave a group when unsatisfied favors contribution and avoids free-riding to a good extent in a range of the enhancement factor where defection would prevail without migration. Our numerical simulation presents results that are qualitatively in line with known experimental data when human agents are given the same kind of information about themselves and the other players in the group. This is usually not the case with customary mathematical models based on replicator dynamics or stochastic approaches. As a consequence, models like the ones described here may be useful for understanding experimental results and also for designing new experiments by first running cheap computational simulations instead of doing costly preliminary laboratory work. The downside is that models and their simulation tend to be less general than standard mathematical approaches.

Funder

Ministerio de Ciencia e Innovación

Comunidad de Madrid

Publisher

IOP Publishing

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Information Systems

Reference49 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3