Abstract
Abstract
Standard epidemic models exhibit one continuous, second order phase transition to macroscopic outbreaks. However, interventions to control outbreaks may fundamentally alter epidemic dynamics. Here we reveal how such interventions modify the type of phase transition. In particular, we uncover three distinct types of explosive phase transitions for epidemic dynamics with capacity-limited interventions. Depending on the capacity limit, interventions may (i) leave the standard second order phase transition unchanged but exponentially suppress the probability of large outbreaks, (ii) induce a first-order discontinuous transition to macroscopic outbreaks, or (iii) cause a secondary explosive yet continuous third-order transition. These insights highlight inherent limitations in predicting and containing epidemic outbreaks. More generally our study offers a cornerstone example of a third-order explosive phase transition in complex systems.
Funder
Volkswagen Foundation
Bundesministerium für Bildung und Forschung
Deutsche Forschungsgemeinschaft
Subject
Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Information Systems
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献