Abstract
Abstract
In complex networked systems theory, an important question is how to evaluate the system robustness to external perturbations. With this task in mind, I investigate the propagation of noise in multi-layer networked systems. I find that, for a two layer network, noise originally injected in one layer can be strongly amplified in the other layer, depending on how well-connected are the complex networks in each layer and on how much the eigenmodes of their Laplacian matrices overlap. These results allow to predict potentially harmful conditions for the system and its sub-networks, where the level of fluctuations is important, and how to avoid them. The analytical results are illustrated numerically on various synthetic networks.
Funder
Laboratory Directed Research and Development
Subject
Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Information Systems
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献