Analysis of the structural complexity of Crab Nebula observed at radio frequency using a multifractal approach

Author:

Langlen Chanu AthokpamORCID,Chingangbam Pravabati,Rahman Fazlu,Brojen Singh R KORCID,Kharb Preeti

Abstract

Abstract The Crab Nebula is an astrophysical system that exhibits complex morphological patterns at different observing frequencies. We carry out a systematic investigation of the structural complexity of the nebula using publicly available imaging data at radio frequency. For the analysis, we use the well-known multifractal detrended fluctuation analysis in two dimensions. We find that radio data exhibit long-range correlations, as expected from the underlying physics of the supernova explosion and evolution. The correlations follow a power-law scaling with length scales. The structural complexity is found to be multifractal in nature, as evidenced by the dependence of the generalized Hurst exponent on the order of the moments of the detrended fluctuation function. By repeating the analysis on shuffled data, we further probe the origin of the multifractality in the radio imaging data. For the radio data, we find that the probability density function is close to a Gaussian form. Hence, the multifractal behavior is due to the differing nature of long-range correlations of the large and small detrended fluctuation field values. We investigate the multifractal parameters across different partitions of the radio image and find that the structures across the image are highly heterogeneous, making the Crab Nebula a structurally complex astrophysical system. Our analysis thus provides a fresh perspective on the morphology of the Crab Nebula from a complexity science viewpoint.

Funder

Department of Science and Technology, Government of India

Asia Pacific Center for theoretical physics

Science and Engineering Research Board of the Department of Science and Technology, Government of India

Department of Atomic Energy, Government of India

Publisher

IOP Publishing

Reference82 articles.

1. Physical approach to complex systems;Kwapień;Phys. Rep.,2012

2. How can we think the complex?;Gershenson,2005

3. Intermittency and scale similarity in the structure of a turbulent plow: Pmm vol. 35, n = 2, 1971, pp. 266–277;Novikov;J. Appl. Math. Mech.,1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3