The likelihood-ratio test for multi-edge network models

Author:

Casiraghi GionaORCID

Abstract

Abstract The complexity underlying real-world systems implies that standard statistical hypothesis testing methods may not be adequate for these peculiar applications. Specifically, we show that the likelihood-ratio (LR) test’s null-distribution needs to be modified to accommodate the complexity found in multi-edge network data. When working with independent observations, the p-values of LR tests are approximated using a χ 2 distribution. However, such an approximation should not be used when dealing with multi-edge network data. This type of data is characterized by multiple correlations and competitions that make the standard approximation unsuitable. We provide a solution to the problem by providing a better approximation of the LR test null-distribution through a beta distribution. Finally, we empirically show that even for a small multi-edge network, the standard χ 2 approximation provides erroneous results, while the proposed beta approximation yields the correct p-value estimation.

Publisher

IOP Publishing

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Information Systems

Reference33 articles.

1. Information theory and an extension of the maximum likelihood principle;Akaike,1973

2. A new look at the statistical model identification;Akaike;IEEE Trans. Autom. Control,1974

3. Why online does not equal offline: comparing online and real-world political support among politicians;Brandenberger,2021

4. Quantifying triadic closure in multi-edge social networks;Brandenberger,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3