The high-frequency and rare events barriers to neural closures of atmospheric dynamics

Author:

Chekroun Mickaël DORCID,Liu HonghuORCID,Srinivasan Kaushik,McWilliams James C

Abstract

Abstract Recent years have seen a surge in interest for leveraging neural networks to parameterize small-scale or fast processes in climate and turbulence models. In this short paper, we point out two fundamental issues in this endeavor. The first concerns the difficulties neural networks may experience in capturing rare events due to limitations in how data is sampled. The second arises from the inherent multiscale nature of these systems. They combine high-frequency components (like inertia-gravity waves) with slower, evolving processes (geostrophic motion). This multiscale nature creates a significant hurdle for neural network closures. To illustrate these challenges, we focus on the atmospheric 1980 Lorenz model, a simplified version of the Primitive Equations that drive climate models. This model serves as a compelling example because it captures the essence of these difficulties.

Funder

Office of Naval Research

National Science Foundation

H2020 European Research Council

Publisher

IOP Publishing

Reference70 articles.

1. Numerical forecasting with the barotropic model;Bolin;Tellus,1955

2. On complete filtering of gravity modes through nonlinear initialization;Baer;Mon. Weather Rev.,1977

3. On the dynamics of gravity oscillations in a shallow water model, with applications to normal mode initialization;Machenhauer;Beitr. Phys. Atmos,1977

4. Normal mode initialization;Daley;Rev. Geophys.,1981

5. Nonlinear normal mode initialization and quasi-geostrophic theory;Leith;J. Atmos. Sci.,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3