Topological data analysis of task-based fMRI data from experiments on schizophrenia

Author:

Stolz Bernadette JORCID,Emerson TeganORCID,Nahkuri Satu,Porter Mason AORCID,Harrington Heather A

Abstract

Abstract We use methods from computational algebraic topology to study functional brain networks in which nodes represent brain regions and weighted edges encode the similarity of functional magnetic resonance imaging (fMRI) time series from each region. With these tools, which allow one to characterize topological invariants such as loops in high-dimensional data, we are able to gain understanding of low-dimensional structures in networks in a way that complements traditional approaches that are based on pairwise interactions. In the present paper, we use persistent homology to analyze networks that we construct from task-based fMRI data from schizophrenia patients, healthy controls, and healthy siblings of schizophrenia patients. We thereby explore the persistence of topological structures such as loops at different scales in these networks. We use persistence landscapes and persistence images to represent the output of our persistent-homology calculations, and we study the persistence landscapes and persistence images using k-means clustering and community detection. Based on our analysis of persistence landscapes, we find that the members of the sibling cohort have topological features (specifically, their one-dimensional loops) that are distinct from the other two cohorts. From the persistence images, we are able to distinguish all three subject groups and to determine the brain regions in the loops (with four or more edges) that allow us to make these distinctions.

Funder

Engineering and Physical Sciences Research Council

Royal Society

Publisher

IOP Publishing

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Histopathological Cancer Detection with Topological Signatures;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

2. Unified topological inference for brain networks in temporal lobe epilepsy using the Wasserstein distance;NeuroImage;2023-12

3. Topo-CXR: Chest X-ray TB and Pneumonia Screening with Topological Machine Learning;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

4. Simple topological task-based functional connectivity features predict longitudinal behavioral change of fluid reasoning in the RANN cohort;NeuroImage;2023-08

5. Topology-Aware Focal Loss for 3D Image Segmentation;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3