Eco-evolutionary games for harvesting self-renewing common resource: effect of growing harvester population

Author:

Bairagya Joy Das,Mondal Samrat SohelORCID,Chowdhury DebashishORCID,Chakraborty SagarORCID

Abstract

Abstract The tragedy of the commons (TOCs) is a ubiquitous social dilemma witnessed in interactions between a population of living entities and shared resources available to them: the individuals in the population tend to selfishly overexploit a common resource as it is arguably the rational choice, or in case of non-human beings, it may be an evolutionarily uninvadable action. How to avert the TOC is a significant problem related to the conservation of resources. It is not hard to envisage situations where the resource could be self-renewing and the size of the population may be dependent on the state of the resource through the fractions of the population employing different exploitation rates. If the self-renewal rate of the resource lies between the maximum and the minimum exploitation rates, it is not a priori obvious under what conditions the TOC can be averted. In this paper, we address this question analytically and numerically using the setup of an evolutionary game theoretical replicator equation that models the Darwinian tenet of natural selection. Through the replicator equation, while we investigate how a population of replicators exploit the shared resource, the latter’s dynamical feedback on the former is also not ignored. We also present a transparent bottom-up derivation of the game-resource feedback model to facilitate future studies on the stochastic effects on the findings presented herein.

Funder

SERB

Prime Minister’s Research fellowship

J.C. Bose National fellowship

Publisher

IOP Publishing

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3