Abstract
Abstract
Understanding the structure and formation of networks is a central topic in complexity science. Economic networks are formed by decisions of individual agents and thus not properly described by established random graph models. In this article, we establish a model for the emergence of trade networks that is based on rational decisions of individual agents. The model incorporates key drivers for the emergence of trade, comparative advantage and economic scale effects, but also the heterogeneity of agents and the transportation or transaction costs. Numerical simulations show three macroscopically different regimes of the emerging trade networks. Depending on the specific transportation costs and the heterogeneity of individual preferences, we find centralized production with a star-like trade network, distributed production with all-to-all trading or local production and no trade. Using methods from statistical mechanics, we provide an analytic theory of the transitions between these regimes and estimates for critical parameters values.
Funder
Helmholtz Association
Bundesministerium für Bildung und Forschung
Deutsche Forschungsgemeinschaft
Subject
Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Information Systems