Planted hitting set recovery in hypergraphs

Author:

Amburg IlyaORCID,Kleinberg Jon,Benson Austin R

Abstract

Abstract In various application areas, networked data is collected by measuring interactions involving some specific set of core nodes. This results in a network dataset containing the core nodes along with a potentially much larger set of fringe nodes that all have at least one interaction with a core node. In many settings, this type of data arises for structures that are richer than graphs, because they involve the interactions of larger sets; for example, the core nodes might be a set of individuals under surveillance, where we observe the attendees of meetings involving at least one of the core individuals. We model such scenarios using hypergraphs, and we study the problem of core recovery: if we observe the hypergraph but not the labels of core and fringe nodes, can we recover the ‘planted’ set of core nodes in the hypergraph? We provide a theoretical framework for analyzing the recovery of such a set of core nodes and use our theory to develop a practical and scalable algorithm for core recovery. The crux of our analysis and algorithm is that the core nodes are a hitting set of the hypergraph, meaning that every hyperedge has at least one node in the set of core nodes. We demonstrate the efficacy of our algorithm on a number of real-world datasets, outperforming competitive baselines derived from network centrality and core-periphery measures.

Publisher

IOP Publishing

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3