Many-body near-field radiative heat transfer: methods, functionalities and applications

Author:

Song JinlinORCID,Cheng QiangORCID,Zhang Bo,Lu Lu,Zhou Xinping,Luo Zixue,Hu RunORCID

Abstract

Abstract Near-field radiative heat transfer (NFRHT) governed by evanescent waves, provides a platform to thoroughly understand the transport behavior of nonradiative photons, and also has great potential in high-efficiency energy harvesting and thermal management at the nanoscale. It is more usual in nature that objects participate in heat transfer process in many-body form rather than the frequently-considered two-body scenarios, and the inborn mutual interactions among objects are important to be understood and utilized for practical applications. The last decade has witnessed considerable achievements on many-body NFRHT, ranging from the establishment of different calculation methods to various unprecedented heat transport phenomena that are distinct from two-body systems. In this invited review, we introduce concisely the basic physics of NFRHT, lay out various theoretical methods to deal with many-body NFRHT, and highlight unique functionalities realized in many-body systems and the resulting applications. At last, the key challenges and opportunities of many-body NFRHT in terms of fundamental physics, experimental validations, and potential applications are outlined and discussed.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference177 articles.

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3