A review of shaped colloidal particles in fluids: anisotropy and chirality

Author:

Witten Thomas AORCID,Diamant HaimORCID

Abstract

Abstract This review treats asymmetric colloidal particles moving through their host fluid under the action of some form of propulsion. The propulsion can come from an external body force or from external shear flow. It may also come from externally-induced stresses at the surface, arising from imposed chemical, thermal or electrical gradients. The resulting motion arises jointly from the driven particle and the displaced fluid. If the objects are asymmetric, every aspect of their motion and interaction depends on the orientation of the objects. This orientation in turn changes in response to the driving. The objects’ shape can thus lead to a range of emergent anisotropic and chiral motion not possible with isotropic spherical particles. We first consider what aspects of a body’s asymmetry can affect its drift through a fluid, especially chiral motion. We next discuss driving by injecting external force or torque into the particles. Then we consider driving without injecting force or torque. This includes driving by shear flow and driving by surface stresses, such as electrophoresis. We consider how time-dependent driving can induce collective orientational order and coherent motion. We show how a given particle shape can be represented using an assembly of point forces called a Stokeslet object. We next consider the interactions between anisotropic propelled particles, the symmetries governing the interactions, and the possibility of bound pairs of particles. Finally we show how the collective hydrodynamics of a suspension can be qualitatively altered by the particles’ shapes. The asymmetric responses discussed here are broadly relevant also for swimming propulsion of active micron-scale objects such as microorganisms.

Funder

Israel Science Foundation

US-Israel Binational Science Foundation

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3