When physics meets chemistry at the dynamic glass transition

Author:

Lu HaibaoORCID

Abstract

Abstract Can the laws of physics be unified? One of the most puzzling challenges is to reconcile physics and chemistry, where molecular physics meets condensed-matter physics, resulting from the dynamic fluctuation and scaling effect of glassy matter at the glass transition temperature. The pioneer of condensed-matter physics, Nobel Prize-winning physicist Philip Warren Anderson referred to this gap as the deepest and most interesting unsolved problem in condensed-matter physics in 1995. In 2005, Science, in its 125th anniversary publication, highlighted that the question of ‘what is the nature of glassy state?’ was one of the greatest scientific conundrums for the next quarter century. However, the nature of the glassy state and its connection to the glass transition have not been fully understood owing to the interdisciplinary complexity of physics and chemistry, governed by physical laws at the condensed-matter and molecular scales, respectively. Therefore, the study of glass transition is essential to explore the working principles of the scaling effects and dynamic fluctuations in glassy matter and to further reconcile the interdisciplinary complexity of physics and chemistry. Initially, this paper proposes a thermodynamic order-to-disorder free-energy equation for microphase separation to formulate the dynamic equilibria and fluctuations, which originate from the interplay of the phase and microphase separations during glass transition. Then, the Adam–Gibbs domain model is employed to explore the cooperative dynamics and molecular entanglement in glassy matter. It relies on the concept of transition probability in pairing, where each domain contains e + 1 segments, in which approximately 3.718 segments cooperatively relax in a domain at the glass transition temperature. This model enables the theoretical modeling and validation of a previously unverified statement, suggesting that 50–100 individual monomers would relax synchronously at glass transition temperature. Finally, the constant free-volume fraction of 2.48% is phenomenologically obtained to achieve a condensed constant (C) of C= 0.12(1−γ) = 1.501 × 10−11 J·mol−1·K−1, where γ represents the superposition factor of free volume and is characterised using the cumulative Poisson distribution function, at the condensed-matter scale, analogous to the Boltzmann constant (k B) and gas constant (R).

Funder

National Outstanding Youth Foundation of China

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3