Acoustic manipulation of multi-body structures and dynamics

Author:

Lim Melody XORCID,VanSaders BryanORCID,Jaeger Heinrich MORCID

Abstract

Abstract Sound can exert forces on objects of any material and shape. This has made the contactless manipulation of objects by intense ultrasound a fascinating area of research with wide-ranging applications. While much is understood for acoustic forcing of individual objects, sound-mediated interactions among multiple objects at close range gives rise to a rich set of structures and dynamics that are less explored and have been emerging as a frontier for research. We introduce the basic mechanisms giving rise to sound-mediated interactions among rigid as well as deformable particles, focusing on the regime where the particles’ size and spacing are much smaller than the sound wavelength. The interplay of secondary acoustic scattering, Bjerknes forces, and micro-streaming is discussed and the role of particle shape is highlighted. Furthermore, we present recent advances in characterizing non-conservative and non-pairwise additive contributions to the particle interactions, along with instabilities and active fluctuations. These excitations emerge at sufficiently strong sound energy density and can act as an effective temperature in otherwise athermal systems.

Funder

Division of Materials Research

Publisher

IOP Publishing

Reference264 articles.

1. III. Acoustic experiments;Kundt;London, Edinburgh Dublin Phil. Mag. J. Sci.,1868

2. XXXIV. On the pressure of vibrations;Rayleigh;London, Edinburgh Dublin Phil. Mag. J. Sci.,1902

3. XLII. On the momentum and pressure of gaseous vibrations and on the connexion with the virial theorem;Rayleigh;London, Edinburgh Dublin Phil. Mag. J. Sci.,1905

4. On the acoustic radiation pressure on spheres;King;Proc. R. Soc. A,1934

5. Acoustic radiation pressure on a compressible sphere;Yosioka,1955

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3