The influence of hypoxia on LET and RBE relationships with implications for ultra-high dose rates and FLASH modelling

Author:

Jones BleddynORCID

Abstract

Abstract Objective. To investigate relationships between linear energy transfer (LET), fluence rates, changes in radiosensitivity and the oxygen enhancement ratio (OER) in different ion beams and extend these concepts to ultra-high dose rate (UHDR) or FLASH effects. Approach. LET values providing maximum relative biological effect (RBE), designated as LETU, are found for neon, carbon and helium beams. Proton experiments show reduced RBEs with depth in scattered (divergent) beams, but not with scanned beams, suggesting that instantaneous fluence rates (related to track separation distances) can modify RBE, all other RBE-determining factors being equal. Micro-volumetric energy transfer per μm3 (mVET) is defined by LET × fluence. High fluence rates will increase mVET rates, with proportional shifts of LETU to lower values due to more rapid energy transfer. From the relationship between LETU and OER at conventional dose rates, OER reductions in UHDR/FLASH exposures can be estimated and biological effective dose analysis of experimental lung and skin reactions becomes feasible. Main results. The Furusawa et al data show that hypoxic LETU values exceed their oxic counterparts. OER reduces from around 3–1.25 at LETU, although the relative radiosensitivities of the oxic and hypoxic α parameters (the OER(α)) exceed those of the standard OER values. Increased fluence rates are predicted to reduce LETU and OER. Large FLASH single doses will minimise RBE increments due to the β parameter reducing by a factor of 0.5–0.25 consistent with oxygen depletion, causing radioresistance. Similar results will occur for photons. Tissue α/β ratios increase by around 10 in FLASH conditions, agreeing with derived ion-beam dose rate equations. Significance. Increasing dose rates enhance local energy deposition rate per unit volume, probably causing oxygen depletion and radioresistance in pre-existing hypoxic sites during UHDR/FLASH exposures. The modelled equations provide testable hypotheses for further dose rate investigations in photon, proton and ion beams.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3