A bi-directional beam-line energy ramping for efficient patient treatment with scanned proton therapy

Author:

Actis OxanaORCID,Mayor Alexandre,Meer David,Rechsteiner Urs,Bolsi Alessandra,Lomax Antony John,Weber Damien Charles

Abstract

Abstract Objective. The treatment of mobile tumours using Pencil Beam Scanning (PBS) has become more prevalent in the last decade. However, to achieve the same beam delivery quality as for static tumours, treatments have to be combined with motion mitigation techniques, not limited but including, breath hold, gating and re-scanning, which typically prolong treatment time. In this article we present a novel method of bi-directional energy modulation and demonstrate our initial experience in improvement of treatment efficiency. Approach. At Paul Scherrer Institute Gantry 2 mobile tumours are treated by combining PBS with gating and volumetric re-scanning (VR), where the target volume is irradiated multiple times. Initial implementation of VR used only descending beam energies, creating a substantial dead time due to the beam-line initialization (ramping) before each re-scan. In 2019 we commissioned an energy meandering strategy that allows us to avoid beam line ramping in-between energy series while maintaining beam delivery quality. Main results. The measured beam parameters difference for both energy sequence are in the order of the typical daily variations: 0.2 mm in beam position and 0.2 mm in range. Using machine log files, we performed point-to-point dose difference calculations between original and new applications where we observed dose differences of less than 2%. After three years of operation employing bi-directional energy modulation, we have analysed the individual beam delivery time for 181 patients and have compared this to simulations of the timing behaviour assuming uni-directional energy sequence application. Depending on treatment complexity, we obtained plan delivery time reductions of up to 55%, with a median time gain of 17% for all types of treatments. Significance. Bi-directional energy modulation can help improving patient treatment efficiency by reducing delivery times especially for complex and specialised irradiations. It could be implemented in many existing facilities without significant additional hardware upgrades.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3