New optically stimulated luminescence dosimetry film optimized for energy dependence guided by Monte Carlo simulations

Author:

De Saint-Hubert Marijke,Caprioli Marco,de Freitas Nascimento Luana,Delombaerde Laurence,Himschoot Katleen,Vandenbroucke Dirk,Leblans Paul,Crijns Wouter

Abstract

Abstract Optically stimulated luminescence (OSL) film dosimeters, based on BaFBr:Eu2+ phosphor material, have major dosimetric advantages such as dose linearity, high spatial resolution, film re-usability, and immediate film readout. However, they exhibit an energy-dependent over-response at low photon energies because they are not made of tissue-equivalent materials. In this work, the OSL energy-dependent response was optimized by lowering the phosphor grain size and seeking an optimal choice of phosphor concentration and film thickness to achieve sufficient signal sensitivity. This optimization process combines measurement-based assessments of energy response in narrow x-ray beams with various energy response calculation methods applied to different film metrics. Theoretical approaches and MC dose simulations were used for homogeneous phosphor distributions and for isolated phosphor grains of different dimensions, where the dose in the phosphor grain was calculated. In total 8 OSL films were manufactured with different BaFBr:Eu2+ median particle diameters (D50): 3.2 μm, 1.5 μm and 230 nm and different phosphor concentrations (1.6%, 5.3% and 21.3 %) and thicknesses (from 5.2 to 49 μm). Films were irradiated in narrow x-ray spectra (N60, N80, N-150 and N-300) and the signal intensity relative to the nominal dose-to-water value was normalized to Co-60. Finally, we experimentally tested the response of several films in Varian 6MV TrueBeam STx linear accelerator using the following settings: 10 × 10 cm2 field, 0deggantry angle, 90 cm SSD, 10 cm depth. The x-ray irradiation experiment reported a reduced energy response for the smallest grain size with an inverse correlation between response and grain size. The N-60 irradiation showed a 43% reduction in the energy over-response when going from 3 μm to 230 nm grain size for the 5% phosphor concentration. Energy response calculation using a homogeneous dispersion of the phosphor underestimated the experimental response and was not able to obtain the experimental correlation between grain size and energy response. Isolated grain size modeling combined with MC dose simulations allowed to establish a good agreement with experimental data, and enabled steering the production of optimized OSL-films. The clinical 6 MV beam test confirmed a reduction in energy dependence, which is visible in small-grain films where a decrease in out-of-field over-response was observed.

Funder

Agentschap Innoveren & Ondernemen

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3