MDT: semi-supervised medical image segmentation with mixup-decoupling training

Author:

Long Jianwu,Ren Yan,Yang Chengxin,Ren Pengcheng,Zeng Ziqin

Abstract

Abstract Objective. In the field of medicine, semi-supervised segmentation algorithms hold crucial research significance while also facing substantial challenges, primarily due to the extreme scarcity of expert-level annotated medical image data. However, many existing semi-supervised methods still process labeled and unlabeled data in inconsistent ways, which can lead to knowledge learned from labeled data being discarded to some extent. This not only lacks a variety of perturbations to explore potential robust information in unlabeled data but also ignores the confirmation bias and class imbalance issues in pseudo-labeling methods. Approach. To solve these problems, this paper proposes a semi-supervised medical image segmentation method ‘mixup-decoupling training (MDT)’ that combines the idea of consistency and pseudo-labeling. Firstly, MDT introduces a new perturbation strategy ‘mixup-decoupling’ to fully regularize training data. It not only mixes labeled and unlabeled data at the data level but also performs decoupling operations between the output predictions of mixed target data and labeled data at the feature level to obtain strong version predictions of unlabeled data. Then it establishes a dual learning paradigm based on consistency and pseudo-labeling. Secondly, MDT employs a novel categorical entropy filtering approach to pick high-confidence pseudo-labels for unlabeled data, facilitating more refined supervision. Main results. This paper compares MDT with other advanced semi-supervised methods on 2D and 3D datasets separately. A large number of experimental results show that MDT achieves competitive segmentation performance and outperforms other state-of-the-art semi-supervised segmentation methods. Significance. This paper proposes a semi-supervised medical image segmentation method MDT, which greatly reduces the demand for manually labeled data and eases the difficulty of data annotation to a great extent. In addition, MDT not only outperforms many advanced semi-supervised image segmentation methods in quantitative and qualitative experimental results, but also provides a new and developable idea for semi-supervised learning and computer-aided diagnosis technology research.

Funder

the Funding Achievements of the Action Plan for High Quality Development of Graduate Education at Chongqing University of Technology

the National Natural Science Foundation of China for Young Scientists

the Science and Technology Research Program of Chongqing Municipal Education Commission

the Foundation and Frontier Research Key Program of Chongqing Science and Technology Commission

the Humanities and Social Sciences Research Program of Chongqing Municipal Education Commission

Publisher

IOP Publishing

Reference72 articles.

1. Semi-supervised semantic segmentation with pixel-level contrastive learning from a class-wise memory bank;Alonso,2021

2. Pseudo-labeling and confirmation bias in deep semi-supervised learning;Arazo,2020

3. Learning with pseudo-ensembles;Bachman;Adv. Neural Inf. Process. Syst.,2014

4. Bidirectional copy–paste for semi-supervised medical image segmentation;Bai,2023

5. An exceedingly simple consistency regularization method for semi-supervised medical image segmentation;Basak,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3