MARGANVAC: metal artifact reduction method based on generative adversarial network with variable constraints

Author:

Li Guang,Ji Longyin,You Chenyu,Gao Shuai,Zhou Langrui,Bai Keshu,Luo Shouhua,Gu NingORCID

Abstract

Abstract Objective. Metal artifact reduction (MAR) has been a key issue in CT imaging. Recently, MAR methods based on deep learning have achieved promising results. However, when deploying deep learning-based MAR in real-world clinical scenarios, two prominent challenges arise. One limitation is the lack of paired training data in real applications, which limits the practicality of supervised methods. Another limitation is that image-domain methods suitable for more application scenarios are inadequate in performance while end-to-end approaches with better performance are only applicable to fan-beam CT due to large memory consumption. Approach. We propose a novel image-domain MAR method based on the generative adversarial network with variable constraints (MARGANVAC) to improve MAR performance. The proposed variable constraint is a kind of time-varying cost function that can relax the fidelity constraint at the beginning and gradually strengthen the fidelity constraint as the training progresses. To better deploy our image-domain supervised method into practical scenarios, we develop a transfer method to mimic the real metal artifacts by first extracting the real metal traces and then adding them to artifact-free images to generate paired training data. Main results. The effectiveness of the proposed method is validated in simulated fan-beam experiments and real cone-beam experiments. All quantitative and qualitative results demonstrate that the proposed method achieves superior performance compared with the competing methods. Significance. The MARGANVAC model proposed in this paper is an image-domain model that can be conveniently applied to various scenarios such as fan beam and cone beam CT. At the same time, its performance is on par with the cutting-edge dual-domain MAR approaches. In addition, the metal artifact transfer method proposed in this paper can easily generate paired data with real artifact features, which can be better used for model training in real scenarios.

Funder

National Natural Science Foundation of China

Jiangsu Provincial Key Research and Development Program

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3