Automated VMAT treatment planning using sequential convex programming: algorithm development and clinical implementation

Author:

Dursun PınarORCID,Hong Linda,Jhanwar Gourav,Huang Qijie,Zhou Ying,Yang Jie,Pham Hai,Cervino Laura,Moran Jean MORCID,Deasy Joseph O,Zarepisheh MasoudORCID

Abstract

Abstract Objective. To develop and clinically implement a fully automated treatment planning system (TPS) for volumetric modulated arc therapy (VMAT). Approach. We solve two constrained optimization problems sequentially. The tumor coverage is maximized at the first step while respecting all maximum/mean dose clinical criteria. The second step further reduces the dose at the surrounding organs-at-risk as much as possible. Our algorithm optimizes the machine parameters (leaf positions and monitor units) directly and the resulting mathematical non-convexity is handled using the sequential convex programming by solving a series of convex approximation problems. We directly integrate two novel convex surrogate metrics to improve plan delivery efficiency and reduce plan complexity by promoting aperture shape regularity and neighboring aperture similarity. The entire workflow is automated using the Eclipse TPS application program interface scripting and provided to users as a plug-in, requiring the users to solely provide the contours and their preferred arcs. Our program provides the optimal machine parameters and does not utilize the Eclipse optimization engine, however, it utilizes the Eclipse final dose calculation engine. We have tested our program on 60 patients of different disease sites and prescriptions for stereotactic body radiotherapy (paraspinal (24 Gy × 1, 9 Gy × 3), oligometastis (9 Gy × 3), lung (18 Gy × 3, 12 Gy × 4)) and retrospectively compared the automated plans with the manual plans used for treatment. The program is currently deployed in our clinic and being used in our daily clinical routine to treat patients. Main results. The automated plans found dosimetrically comparable or superior to the manual plans. For paraspinal (24 Gy × 1), the automated plans especially improved tumor coverage (the average PTV (Planning Target Volume) 95% from 96% to 98% and CTV100% from 95% to 97%) and homogeneity (the average PTV maximum dose from 120% to 116%). For other sites/prescriptions, the automated plans especially improved the duty cycle (23%–39.4%). Significance. This work proposes a fully automated approach to the mathematically challenging VMAT problem. It also shows how the capabilities of the existing (Food and Drug Administration)FDA-approved commercial TPS can be enhanced using an in-house developed optimization algorithm that completely replaces the TPS optimization engine. The code and pertained models along with a sample dataset will be released on our ECHO-VMAT GitHub (https://github.com/PortPy-Project/ECHO-VMAT).

Funder

MSK Cancer Center Support Grant/Core Grant from the NIH

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3