ERSegDiff: a diffusion-based model for edge reshaping in medical image segmentation

Author:

Chen BaijingORCID,Wang Junxia,Zheng Yuanjie

Abstract

Abstract Medical image segmentation is a crucial field of computer vision. Obtaining correct pathological areas can help clinicians analyze patient conditions more precisely. We have observed that both CNN-based and attention-based neural networks often produce rough segmentation results around the edges of the regions of interest. This significantly impacts the accuracy of obtaining the pathological areas. Without altering the original data and model architecture, further refining the initial segmentation outcomes can effectively address this issue and lead to more satisfactory results. Recently, diffusion models have demonstrated outstanding results in image generation, showcasing their powerful ability to model distributions. We believe that this ability can greatly enhance the accuracy of the reshaping results. This research proposes ERSegDiff, a neural network based on the diffusion model for reshaping segmentation borders. The diffusion model is trained to fit the distribution of the target edge area and is then used to modify the segmentation edge to produce more accurate segmentation results. By incorporating prior knowledge into the diffusion model, we can help it more accurately simulate the edge probability distribution of the samples. Moreover, we introduce the edge concern module, which leverages attention mechanisms to produce feature weights and further refine the segmentation outcomes. To validate our approach, we employed the COVID-19 and ISIC-2018 datasets for lung segmentation and skin cancer segmentation tasks, respectively. Compared with the baseline model, ERSegDiff improved the dice score by 3%–4% and 2%–4%, respectively, and achieved state-of-the-art scores compared to several mainstream neural networks, such as swinUNETR.

Funder

New Twentieth Items of Universities in Jinan

Major Basic Research Project of Shandong Natural Science Foundation

The National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3